
282 

Acta Cryst. (1986). A42, 282-286 

New Types of Space-Filling Polyhedra with Fourteen Faces 

BY M. EMiLIA ROSA AND M. A. FORTES 

Departamento de Engenharia de Materiais, Instituto Superior T~cnico; Centro de Mec~nica e Materiais da 
Universidade T6cnica de Lisboa ( CEMUL), Avenida Rovisco Pais, 1096 Lisboa Codex, Portugal 

(Received 20 August 1985; accepted 10 February 1986) 

Abstract 
A study of the staggered packing of identical 
hexagonal prisms leading to four-connected periodic 
structures with polyhedral cells of fourteen faces has 
been undertaken. Special attention was given to those 
packings that lead to periodic structures with two 
polyhedra per lattice point, and such that the two 
polyhedra are related by a pure rotation and/or  enan- 
tiomorphism. The general solution for packings of 
this type was obtained and the topology of the inter- 
vening polyhedra was determined. It is shown that 
polyhedra with eight hexagonal faces and six square 
faces, topologically isomorphic to the truncated 
octahedron, can be packed with or without a rotation. 
The polyhedra which can be packed with the respec- 
tive enantiomorphs (with or without rotation) have 
four square faces, four pentagonal faces and six 
hexagonal faces. Each type of packing is compatible 
with Bravais lattices of any category and each topo- 
logical solution is compatible with a range of convex 
shapes. 

1. Introduction 

In the course of an investigation on the cellular struc- 
ture of cork (see, for example, Gibson, Easterling & 
Ashby, 1981) we decided to study in detail the distinct 
possibilities of packing identical hexagonal prisms in 
a staggered way, so that the resulting four-connected 
structure can be described in terms of polyhedral 
cells, each with 14 faces (36 edges and 24 vertices). 
This number of faces results because a new edge, and 
therefore a new face, appears in the lateral faces of 
each prism owing to contacts with the six prisms that 
are laterally adjacent to it; the extra edges are shared 
by the basal faces of the adjacent prisms. The polyhe- 
dral cells are connected in such a way that three meet 
at an edge and four at a vertex. The structure is 
therefore tetravalent, as are many structures in crys- 
tallography (Wells, 1977), materials science (Smith, 
1964) and biology (Dormer, 1980). 

There are, of course, infinitely many solutions to 
the problem of packing identical hexagonal prisms, 
even if solutions are restricted to being periodic. 
Furthermore, for each topological solution (i.e. topo- 
logical types ofpolyhedra that enter into the packing), 
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there are infinitely many geometrical solutions since, 
for example, the prisms need not be straight and their 
bases need not be regular hexagons. The polyhedra 
in such 3D packings have 180 ° dihedral angles 
between six pairs of faces, but again the structure can 
be deformed so as to produce normal convex poly- 
hedra with planar faces and with dihedral angles 
smaller than 180 ° . This possibility will be discussed 
in more detail in the final section. 

A well known example of this type of packing 
(Dormer, 1980) is the one in which all cells are 
topologically isomorphic to the truncated octahe- 
dron, with six square faces and eight hexagonal faces. 
This packing results when the levels of the bases of 
the six prisms adjacent to any prism (relative to the 
base of the central prism) are 1/3, 2/3, 1/3, 2/3, 1/3, 
2/3 in units of the height of the prisms. 

In this article we describe results obtained in the 
course of an investigation of periodic packings of 
hexagonal prisms leading to structures with one or 
two polyhedra per lattice point. In the latter case, 
only solutions for which the two polyhedra are related 
by a rotation and/or  enantiomorphism were con- 
sidered. 

For packings with one polyhedron per lattice point 
the only solution obtained corresponds to the trun- 
cated octahedron (six square faces and eight 
hexagonal faces). It was found, however, that there 
are metrical versions of this polyhedron that fill space 
when packed with one rotation. This result is new. 
Two other types of polyhedra with 14 faces (squares, 
pentagons and hexagons) are known that fill space 
with one rotation (Williams, 1968), but these are not 
obtained as solutions for the packing of prisms. 

The tetradecahedra that fill space when packed in 
enantiomorphic pairs (with or without rotation) can 
be of two types: one is isomorphic to the truncated 
octahedron and the other has four quadrangular, four 
pentagonal and six hexagonal faces. We are not aware 
of other examples of enantiomorphic pairs which fill 
space when packed together. 

The general form of the lattice vector basis compat- 
ible with each type of packing is derived, from which 
the Bravais type of lattice can be determined. It is 
concluded that all types of packing can be arranged 
in any type of Bravais lattice. 
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2. Generation of packings 

In the packings that will be studied it is possible to 
identify columns of polyhedra, each column compris- 
ing all prisms that are base adjacent. If H is the height 
of the prisms, measured parallel to the axis of the 
columns (z axis), the levels (z coordinates) of the 
bases of the prisms in a given column differ from 
each other by integral multiples of H. Therefore, if 
one level is known, all others can be identified. The 
levels of the prisms adjacent to a central prism are 
in an interval of amplitude H. The level of any prism 
can be taken as zero and the levels of the adjacent 
prisms taken in the interval 0, H or 0, -H .  When this 
is done we say that the level of the central cell is 
reduced to zero. In the following we shall take the 
height of the prisms as unity. 

The simplest way of generating packings is to use 
a three-connected planar network of identical 
hexagons to represent a section parallel to the bases 
of the prisms and inscribe in each hexagon a number 
defining the levels in the corresponding column, in 
such a way that two adjacent hexagons have levels 
not differing by an integer. In a periodic packing the 
levels must be arranged periodically. Fig. 1 shows an 
example of a periodic packing of prisms with five 
prisms per lattice point. The centres of the prisms 
ABCD in a unit cell of the net of hexagons define a 
base of a parallelepipedic unit cell of the 3D lattice. 
The other, parallel, base is defined by the centres of 
the adjacent prisms in the same column as A, B, C 
and D. The hexagons in Fig. 1 are regular but any 
other net of identical hexagons could be used. 

adjacent cells. The dashed lines indicate the levels in 
the extreme lateral faces; this helps in the iden- 
tification of the polygonalities of the resulting faces. 
The bases of the cells are of course hexagonal in all 
cases. The face content set of each cell is indicated 
in Fig. 2 using the usual convention of writing as a 
subscript the number of faces of each polygonality. 

The intervening polygonalities of faces are 4, 5 and 
6, the average polygonality being 5.143 in all cases. 
The seven polyhedra of Fig. 2 are among the 59 
tetradecahedra with polygonalities between four and 
six, identified by Hucher & Grolier (1977), but all are 
non-isomorphic to the tetradecahedra identified by 
Williams (1968) as space fillers with one rotation. 

Types I and II of Fig. 2 are those that enter in the 
periodic packings to be described below. Type I is of 
course isomorphic to the truncated octahedron. Its 
point symmetry in the regular hexagonal straight pris- 
matic version is at most 3m, but its shape can be 
altered to produce a regular polyhedron with point 
symmetry m3m; type II has a maximum point sym- 
metry 222, which is also the maximum symmetry in 
the 'prismatic' version. The Schlegel representation 
of this polyhedron is shown at the bottom of Fig. 2. 

By reducing to zero the level of a particular pris- 
matic cell in a 3D packing it is straightforward to 
identify its topological type and also to conclude 

TYPE I 
46 68 

3. Topological types of individual polyhedra 

The topological type of each prismatic cell can easily 
be inferred from the levels of the six prisms that are 
adjacent to it. It is straightforward to show that there 
are only seven topologically distinct possibilities 
which are enumerated in Fig. 2. The graphs in this 
figure represent the six lateral faces of a prismatic 
cell with indication of the levels of the bases of the 

1/5 

/ , , I S ~  LEVEL1150 TYPEvI 

215 Ig 

3 ~  4/5N5 IIIi 

Fig. 1. A periodic packing of hexagonal prisms with five cells per 
lattice point. The numbers are the levels of the prisms, each of 
which has unit length. The topological types (Fig. 2) of each of 
the five polyhedra in a period are indicated. ABCD defines a 
unit cell. 

TYPE II TYPE III TYPE IV 
44s4~ ~. s~ 66 44 ~. r~ 

TYPE V TYPE Vl TYPE VII 
~ss~. ~ s8 ~ 42 s8 6~ 

TYPE II 
Fig. 2. The seven topological types of polyhedra that result from 

the staggered packing of hexagonal prisms. The graphs show 
the six lateral faces of the prisms with the extra edge due to 
contact with adjacent prisms. The exact levels of the extra edges 
are not relevant except for their positions relative to the levels 
in adjacent lateral faces. Also shown is the Schlegel representa- 
tion of a type II polyhedron. 
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whether  or not  two cells are identical  ( identical  
reduced levels, in the same order). The types of  poly- 
hedra  that enter in the packing of  Fig. 1 were identif ied 
in this way and  are indicated in that figure. 

4. Simple periodic packings 

In addi t ion to operat ion I (identity) that relates two 
identical  cells, we shall  consider  two other operations.  
The operat ion R rotates a cell by 180 ° about  an axis 
paral lel  to the bases, changing the reduced level, a, 
of  a par t icular  adjacent  cell into ( - a ) .  The levels a 
and  - a  (or 1 -  or) will be termed complementary .  A 
rotated cell therefore has reduced levels which are 
complementa ry  to those of  the original cell and  in 
reverse order. The operat ion E transforms a cell into 
its enan t iomorph ,  which has the same reduced levels 
but  in reverse order. Final ly,  the operat ion E R  = R E  
can be def ined which changes the reduced levels to 
their  complementar ies  in the same order. Fig. 3 sum- 
mafizes the operat ions defined, showing the transfor- 
mat ions of  the reduced levels.* 

The packings that will be discussed are those with 
one or two po lyhedra  per lattice point  and such that, 
in the latter case, the two polyhedra  are related by 
E, R or R E .  We shall  denote these packings by I 

* It is possible to construct a periodic three-connected network 
with a pair of non-regular hexagons per lattice point, the two 
hexagons being related by a rotation (but not with pairs of enan- 
tiomorphic hexagons !). This suggests that hexagonal prisms of two 
types, related by a 180 ° rotation about the axis of a prism, can be 
packed to fill space. It can be shown, however, that such packing 
cannot be four-connected. 

f b 

-Q _ ~  -C 

Fig. 3. Effect of operations I, E, R and ER on the reduced levels 
of a cell (the numbers a to f are in the interval 0, 1). 

(one po lyhedron  per lattice point) and by E, R and 
R E  (two po lyhedra  per lattice point). 

The general  solution for the packings of  each type 
is obta ined as follows. A central cell is taken with the 
six reduced levels of  adjacent  cells as unknowns.  For 
each adjacent  cell the level of  the cell and of  three 
adjacent  cells are defined in terms of  those unknowns.  
The level of  each adjacent  cell is reduced to zero and 
the reduced levels are matched  to those of  the refer- 
ence cell according to the type of  packing that is being 
searched. All combinat ions  have to be considered.  

Two main  conclusions have been drawn from this 
systematic analysis.  The first is that all possible pack- 
ings with two polyhedra  per lattice point  have the 
cells of  each type in paral lel  alternating rows of  the 
hexagonal  network, as shown in Fig. 4(b) for the R E  

packing. The second conclusion is that all packings 
can be derived, as part icular  cases, from the R E  

packing. The general  solution is the one shown in 
Figs. 4(a) ,  (d) ,  while Fig. 4(c) shows the reduced 
levels of  cells ( - a )  and ( / 3 -  a )  of  Fig. 4 (a )  leading 
to the conclusion that those cells can be related by I 
and ER, respectively, to the central cell of  Fig. 4(a) .  

For the par t icular  values of  the levels, shown in 
Table 1, there are degeneracies which correspond to 
the other packings.  If  E = I # R, that is, i f  there is 
not an enant iomorph ,  the packing is R. Fig. 5(a)  
shows the solutions for this case. If  R = I ~ E the 

(a) (b) (c) 

I I I 
(d) 

Fig. 4. (a) The general solution for periodic packings with at most 
two polyhedra per lattice point. Except for the degenerate cases 
indicated in Table 1, this solution leads to an ER packing with 
the I and ER types arranged as in (b). Reduction to zero of the 
levels of cells ( -a)  and (/3 - a) is shown in (c) indicating that 
these cells are respectively I and ER related to the cell shown 
in (a). A portion of the structure is shown in (d) with indication 
of the levels of the various cells. The topological types of poly- 
hedra are indicated in Table 1. 
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packing is E, as shown in Fig. 5(b). Finally, if R = E, 
equivalent to RE = / ,  the packing is I (Fig. 5c). 

The topological types were identified in each case 
and are indicated in Table 1. Only types I and II of 
Fig. 2 occur. In I and R packings the polyhedra are 
of type I, while in E packings the polyhedra are of 
type II. There are ER packings with each of these 
two types of polyhedra. 

5. Bravais lattices of periodic packings 

The hexagonal net obtained by sectioning the pack- 
ings by a plane parallel to the bases of the prisms 
can be defined by two vectors ot and 02 which form 
a primitive unit cell, as in Fig. 6(a). The planar lattice 
formed by the projections, on that plane, of the 
centres of I cells is defined by 01, 02 for I packings 
and by 01,202 for the other packings, 01 being taken 
in the direction of adjacent I cells (Fig. 6b). If a third 
vector oa is introduced along the z axis, of length 
equal to the height of the prisms, the lattices are 
defined in each case by a vector basis el, e2, ea given 
by 

e l  = o1 + 0~o3 

e2 = n o 2 +  ~o3 (1) 

e 3 = 0 3 

with the following values of n and ~: (cf Fig. 4d): 

I packings: n = 1; ~ =/3; 

other packings : n=2; ~ ' = / 3 - 7 + a .  

There are no restrictions on the choice of the three 
non-coplanar vectors ol, o2, 03. In particular, ol, 02 

1 - ~ / _ ~ 2 e  

(a) 

•2• od2 

(b) 

2 )--.~ 2 

(c) 

Fig. 5. For particular values of  the levels a, fl, 7 in Fig. 4(a),  the 
E R  packing degenerates into R, E and I packings as shown 
respectively in (a ) ,  (b )  and (c). The topological types of  the 
polyhedra are indicated in Table 1. 

Table 1. Topological types of space fillers in various 
packings 

Conditions Topological type 
Packing type (Fig. 4a) of  polyhedra 

R E = I  I 
/3 = y 
o r  

/3=2a; o t + y = l  

E R = I II 
a = 1/2; y = -/3 
o r  

/3 = et/2; y = (1 + a)12 

I E = R  
/3 + ~ , - a  =0 I 

E = R = I  
/3= y = ( 1 + o t ) 1 2  I 

ER  All other eases 
(0< %/3, y < l )  

/3, 7 .:~ a I 
a between/3 and 7 II 

may be chosen to define any type of planar lattice. 
If this lattice is not rectangular or quadrangular, the 
hexagons can be taken as the Wigner-Seitz cells of 
the lattice, as in Fig. 7(a). A net of hexagons with a 
quadrangular or rectangular lattice can also be con- 
strutted, as in the example of Fig. 7(b). There is also 
no restriction to the values of a and ~ in (1), except 
those indicated in Table 1 for particular types of 

I 

~' ~, ER 

J 

(a) (b) 

Fig. 6. Definition of  the vectors o 1 and 02 that enter into vector 
bases for the 3D periodic structures. 

(a) (b) 
Fig. 7. ( a )  A n  I packing with a simple cubic lattice, with indication 

of  the vectors 01, 02 and 03 (projection on the plane of  the bases 
shown) used in the definition of  a vector basis of  the cubic 
lattice. (b) An E packing with a body-centred tetragonal lattice. 
03 is perpendicular to the plane of  the bases. 
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packing. In particular, they can be irrational, in which 
case the plane parallel to the bases of the prisms is 
not a lattice plane. 

For given (010203) and a, ~:, the basis (ele2e3) c an  
be determined and from it the type of Bravais lattice 
can be identified (for example, using the method of 
reduced cells). Conversely, given a vector basis 
(eleEe3) defining any type of Bravais lattice, there are 
always solutions for (010203) and a, ~ compatible with 
each type of packing. 

Fig. 7(a) shows an I packing with a simple cubic 
lattice, in which Ol = u l -  1/2u3; o 2 = h E -  3 /4u3;  O 3 - "  

u3, where Ul, u2, u3 define a cubic unit cell. The angle 
of 03 with the normal to the plane of the bases is 
42.03 °. Fig. 7(b) shows an E packing with a body- 
centred tetragonal lattice; the lattice of hexagons is 
quadrangular and 03 is perpendicular to the plane of 
the bases (straight prisms). 

6. The shape of space fillers 

The polyhedra considered so far were derived from 
prisms by introducing additional edges and faces, 

Fig. 8. Perspective view of a type II polyhedron that fills space 
with its enantiomorph. 

and therefore have dihedral angles of 180 ° between 
pairs of lateral faces. This geometric feature is of 
course not essential and completely convex space- 
filling polyhedra can be derived from the 'prismatic' 
polyhedra. For example, the regular truncated 
octahedron can be obtained by a suitable deformation 
of the topologically isomorphic I packing of prisms 
described above. In general, a 'prismatic' packing in 
which, as we have seen, the prisms need not be straight 
or regular, may be deformed into another space-filling 
packing of the same periodicity and topological type, 
provided the deformation is the same at lattice 
equivalent points. Furthermore, this deformation pre- 
serves the type of packing, in the sense that an E 
packing, for example, remains an E packing upon 
deformation. 

We have used this procedure to obtain a model of 
an E packing consisting of truly convex polyhedra 
with planar faces. The complete description of this 
polyhedron will not be given since it is not specially 
relevant, but we show in Fig. 8 a perspective line 
diagram of the polyhedron obtained (point group 
222). 
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Abstract 

A weighted 19-point parabolic interpolation formula 
applicable to computer interpretation of Fourier maps is 
derived. 

In the course of programming and testing a peak-picking 
routine for automatic interpretation of Patterson, super- 
position and symmetry maps (Pavel~ik, 1986), we found 
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that in some cases, where peak shapes are poor, the peak 
interpolation formula due to Rollett (1965) gave some cor- 
rections greater than half of the grid spacing. Instead of 
using a simple three-point parabolic 1D interpolation a 
weighted 19-point 3D parabolic interpolation was derived. 
The peak coordinates are given by minimizing the sum 

w~ Fi - Ao + Ajxj + AA:,x , 
i=l j=l j=1 
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